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HEAT FLOW IN A ROTATING WELD POOL 
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Abstract-A model is proposed for heat flow in a thin plate due to a slowly traversing source in a current- 
carrying weld pool, which is rotating at high speed due to an applied magnetic field. A simple two- 
dimensional treatment predicts the distortion of the free boundary between the pool and the surrounding 
solid. The distortion from a circle depends on the size of a small parameter, 8, which is inversely proportional 
to the speed of rotation. Significant differences arise between the present model of a vigorously stirred pool 

and the Rosenthal model of a stagnant pool. 

NOMENCLATURE 

Cartesian co-ordinates ; 
polar co-ordinates; 
velocity field ; 
traverse speed ; 
rotational speed; 
typical rotational speed; 
radius of pool; 
unit vectors in x and @ directions; 
non-dimensional co-ordinates ; 
spatial co-ordinate in boundary layer ; 
non-dimensional rotational speed ; 
&function ; 
latent heat per unit mass; 
thermal diffusivity; 
thermal conductivity; 
specific heat per unit mass ; 
strength of heat source; 
temperature; 
ambient temperature; 
melting tem~rature; 
Laplacian operator; 
non-dimensional source strength; 
non-dimensional temperature func- 
tions in outer solution ; 
non-dimensional temperature func- 
tions in inner solution; 
P&let number based on I( ; 
inverse of P&let number based on ve ; 
measure of asymmetry ; 
integer; 
modified Bessel functions; 
unknown coefficients. 

1. INTRODUCIION 

THERE is currently considerable interest in welding 
technology in the application of magnetic fields to stir 
the pool of molten metal in the vicinity of the heat 
source [l-3]. The resulting welds are found to have 
more stable profiles and are less prone to solidification 
cracking. The existence of vigorous motion in the pool 
due to self-induced magnetic fields has been known for 
many years and there have been several attempts to 

model such effects f4-101. The point of applying a 
strong external magnetic field is to overcome the effect 
of these and any other spurious motions. The as- 
sociated P&let number due to rotation of the molten 
metal is O(10’) in these experiments. The shape of the 
pool boundary is observed to be sensitive to the 
direction and strength of rotation of the pool ; in 
particular, the pool shifts at right angles to the 
direction of traverse of the source. The main aim of this 
paper is to predict how the shape of the boundary 
depends on various parameters. 

We considera two-dimensional model of the weld in 
a thin plate (see Fig. 1). Current enters the pool at the 
origin and diverges radially outwards. A magnetic field 
is applied in the vertical direction which interacts with 
the current to produce a Lorentz force in the azimuthal 
direction, causing the fluid to rotate about the origin. 
In addition, there will also be self-induced motions 
near the origin where the current enters the material, 
but we anticipate such effects to be unimportant in thin 
plates. Heat is generated at the point where the current 
enters the plate, i.e. at the origin. As we are interested 
only in the heat flow over distances which are large 
compared with the plate thickness, it is reasonable to 
model the heat source as a line source and therefore 
consider only a two-dimensional problem. The case of 
a stationary source is of little interest in welding. In 
most welding processes the source moves relative to 
the workpiece with constant velocity. Typical traverse 
speeds are of the order of a fe:v mm s- ’ which are very 
small compared with the typical rotational speeds of 
around 165 x lo2 mm s-i employed by WiHgoss 
and others. We therefore expect significant differences 
between our model of a rapidly rotating pool and 
Rosenthal’s model [ 1 l] in which the liquid motion is 
ignored. Since we are interested only in explaining the 
broad qualitative effects, we make the simplifying 
assumption of an inviscid liquid in the pool. Latent 
heat is ignored in our solution. An estimate of the effect 
of latent heat for a moving heat source and a stagnant 
weld pool has been made by Andrews and Atthey [ 121. 
They conclude that it distorts the melting isotherm by 
O(Y), where 7 = L/CT, is the latent heat parameter; 
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Frc;. I. Streamlines around the pool. 

L, c, T, are the latent heat of fusion, specific heat and 
melting temperature, respectively. Typically, y - 0.3 
for steels, and we anticipate the distortion due to latent 
heat to be signifi~ntly smaIler than that due to the 
rapid rotation of the pool. 

2. MATHEMATICAL MODEL 

We consider a point source of heat, q, at the origin, 
surrounded by a rapidly rotating inviscid liquid pool, 
which is itself bounded by a solid region streaming 
slowly in the negative x-direction (see Fig. 1). We 
assume a velocity field of the form 

- & + “,(r)e, in the liquid, 
V” 

i 
(1) 

- us, in the solid, 

and we take the shape of the solid-liquid boundary to 
be a circle to a first approximation. We anticipate the 
errors incurred to be only slight provided the predicted 
distortion of the shape of the melting isotherm from a 
circle is small. This velocity field implies that there is a 
trapped region of circulating fluid around the origin 
and another region near the boundary in which fluid 
is present for only a finite time. If ]uej >> u then the 
region of trapped fluid will occupy the bulk of the pool. 

The steady-state temperature field, T, satisfies the 
heat conduction equation 

AL\?” = D-Iv ,VT - (q/k)d(r) (2) 

where L), k are the thermal diffusivity, conductivity, 
respectively (assumed constant), and v is the velocity at 
any point in the material. On the solid-liquid boun- 
dary the temperature and temperature gradient are 
both continuous ; latent heat effects are ignored in this 
paper. For convenience, we normalise 

X = x,frot R = r-jr,, 4 = (T- TcXTm- T,), 

V = v&,, Q = q/2nkT,,,, (3) 

where r. is the radius of the pool, T, is the ambient 
temperature, T,,, is the melting temperature and r0 is 

some characteristic rotational speed in the liquid, 
which is taken to be the fluid speed on the boundary in 
our inviscid model. We also note the existence of two 
non-dimensional parameters. 

a = uro/2D, F = D/v,,r,. (4) 

cz and 6-l are essentially P&let numbers for the solid 
and liquid, respectively. Numerically, a - 1 and E 
- lo-* for typical welding conditions. The norma- 
lised form of equation (2) is 

(PRR + R-‘~R + R-2~~~ + 2~4, 

=I: -‘VR-‘4, - Q&R), R < 1, (5) 

$RR + R”“‘$, + R-2g58e + 2a4x = 0, R > 1, (6) 

where the subscripts denote partial derivatives. 
The general solution in the solid which decays to 

zero at infinity is obtained by making the usual 
substitution (p = exp( -crX)Y and separating the 
variables, whence 

# = eeZX f A,K,(aR)eimB. 
m=-CC 

(7) 

K,(aR) is the modified Bessel function of the second 
kind. 

In the liquid we look for a simple perturbation 
solution 

d, = tpO + E& t ’ If @I 

where &, (PI,. . . are periodic functions of 0. Substitut- 
ing (8) in (5) yields, to 0(1*-l), 

a$,lae = 0, (9) 

so that #0 is a function of R aione. To O(1) we have 

= VR- ld$ -Q&R). (IO) 
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Integrating (10) with respect to 0 from 0=0 to 2n and 
applying the condition that 4r is periodic we obtain 

the equation for 4,, 

R-‘$ Rg = -Qh(R), 
c > 

which has the solution 

&, = 1 - Q In R, (11) 

where the constant of integration has been chosen so 

that the melting isotherm b= 1 occurs on R= 1 to a 
first approximation. The standard approach would be 

to match temperature and temperature gradient every- 
where around the boundary R= 1. However, close 
inspection of (7), (8) and (11) shows that the form of 
the perturbation solution precludes continuity of both 
temperature and temperature gradient everywhere 
around the boundary. However, we anticipate the 

azimuthal variation of temperature gradient to be 0( 1) 
near the boundary. Hence we look for a thermal 
boundary layer solution in this region. 

From the form of the energy equation (5), we scale 

p = (1- R)E-+, m(p) = 4(R), (12) 

so that (5) becomes 

cDpp - Ff(1 + 2a cos fI)@, = me, (13) 

on using V(1) = 1 and neglecting terms of O(E). The 

appropriate expansion for @ is 

@=@o+&f@l+...l (14) 

where Q. satisfies 

(15) 

Periodic solutions of (15) which can be matched 
with the outer solution (11) take the form 

@e = B0 + cop + 

1 D”, exp{ -esgn(m)in’41mIfp}eims. (16) 

Ill);0 

Matching (16) as p + cc with the outer solution (11) as 
R + 1 gives 

B” = 1 and Co = 0. (17) 

Before applying the continuity conditions across 
R = 1 we expand the unknown coefficients A, in (7) as 

the series 

A =A’+cfAl+... m m m (18) 

Comparing the radial derivatives of the leading terms 
in (7) and (14) we observe the coefficients of the D”, 
terms alone to be O(F-f), so that 

0: = 0, for all m. (19) 

Equating the temperatures across the boundary to 
0( 1) gives 

e-ucoSO 5 A~K,(a)eimB = 1, (20) 
m=--m 

which is readily solved using the result [ 131 

e’ cos 0 = f I,(cc)cos m0, 
m=-‘Z 

to yield 

A: = ~,(~)lK&)~ (21) 

where I,(U) is the modified Bessel function of the first 

kind. 
In order to equate the temperature gradients to 0( 1) 

we need the next term, Or, in the expansion (14). 
Noting that Do = 1, we find that @t satisfies the same 
differential equation (15) as mo, with the same general 
periodic solution (16) (with the superscript 0 replaced 
by 1). As before, matching to the outer solution in the 
body of the liquid, yields 

B’ =0, C’ = Q. 

Then equating the temperature gradient in the inner 
region to that in the solid (7) gives 

_ Q + 1 DA esc7n(m)i~~4 1 m 1 f eimfl 

$0 

= -a cos 0 + a e-xcasO c Ankle’““, (22) 
m 

which we Fourier analyse to find the relationship 
between Q and tl and also derive the coefficients 
D,!,(m # 0). Finally, we equate the temperature to 
O(E+), i.e. 

e -ZCOS% c A,!&,(cc)eimo = 1 0; eims (23) 
m 

WI?0 

from which we similarly derive the A,!, coefficients. 
Thus the inclusion of the thermal boundary layer 

between the body of the pool and the solid allows the 
construction of an approximate solution valid to 
O(E*). Furthermore, since the only information from 
the body of the pool used in the matching is the melting 
temperature and total heat flux, we observe that the 
precise distribution of the heat source in the liquid is 
immaterial, provided it is still radially symmetric. 

3. RESULTS 

The various infinite series arising from the ex- 

pressions for temperature and temperature gradient 
are found to converge very rapidly for typical values of 

a. Hence the numerical computation of temperature is 
straightforward. Figure 2 compares the isotherms in 
the solid region for the present mode1 of a rotating 
liquid pool in the limit as E + 0 with the Rosenthal [ 1 l] 
solution, given by equation (7) with A, = Q, A,,, = 0 
(m # 0). Broadly speaking, the effect of infinite ro- 

tation is to create a distributed source over a disc 

R = 1. The upstream isotherms are pushed further 
upstream and the downstream isotherms are pulled 
back nearer the source in this case. Figure 3 shows the 
isotherms for E = 0.02 and a = 1. The upstream iso- 
therms are little changed from the previous case but 
the downstream isotherms are significantly elongated 
and asymmetric about the X-axis. This indicates 
preferential heat flow to one side of the weld, with the 
boundary of the pool beginning to take the character- 
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FIG. 2. Comparison between the rotating pool model (Y > 0) 
for c = 0 with the Rosenthal model (Y < 0), taking x = 1 and 

Q = 1.29. 

istic ‘tadpole’ shape observed experimentally. Figure 4 experiment and theory, though the general trend is in 

shows the relationship between (non-dimensional) line with preliminary rwsults obtained by Willgoss 

power Q, and the traverse P&let No. a, which is (private communication). When detailed experimental 

approximately linear for tl > 1. Finally, Fig. 5 shows results are available there would be interest in con- 

the departure of pool shape from symmetry about the sidering other velocity profiles, in particular those 

X-axis with increasing E. The measure of asymmetry based on a viscous fluid with a rapid variation in 

we adopt is the ‘shift factor’, s, defined by velocity near the solid-liquid boundary. 

s = ${min(Y) + max(Y)). 

for points (X, Y) on the melting isotherm @ = 1; the 

sign of s depends on the direction of rotation. Unfor- 
tunately, there is insufficient experimental data at the 
present time for the detailed comparison between 

FIG. 3. Isotherms for the case i: = 0.02, a = 1.0, Q = 1.29. 
(The shaded region denotes the pool.) 

IO - 
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FIG. 4. Relationship between the non-dimensional power, Q, 
and the traverse P&let number, E. 

FIG. 5. Plot of the sideways shift of the pool with J:. 
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4. CONCLUSIONS 

The two-dimensional heat flow problem of a slowly 

traversing source surrounded by a rapidly rotating 5 
weld pool can be analysed by means of the small 
parameter E = D/u,r,. It accounts for the departure 6 
from symmetry of the shape of the pool about the 
direction of traverse. The results for the rapidly 
rotating pool differ significantly from those predicted 7 
by the Rosenthal model in which there is no fluid 
motion. 
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FLUX THERMIQUE DANS UNE SOUDURE ANIMEE DUNE ROTATION 

R&m&On propose un modile pour le flux thermique dans une plaque mince, du a une source la traversant 
lentement dans une soudure porteuse de courant qui tourne a grande vitesse sous I’effet d’un champ 
magnetique. Un traitement simple, bidimensionnel prtvoit la distorsion de la front&e entre le bain et le 
solide. La distorsion par rapport a un cercle depend de la valeur dun petit parametre E qui est inversement 
proportionnel a la vitesse de rotation. Des differences sensibles apparaissent entre ce modtle dun bain liquide 

vigoureusement bras& et celui de Rosenthal dun bain au repos. 

WARMEFLUSS IN EINEM ROTIERENDEN SCHMELZBAD 

Zusammenfassung-Fiir den Warmeflug in einer diinnen Platte, der von einer langsam querbewegten 
Warmequelle in einem stromdurchflossenen Schmelzbad erzeugt wird, welches sich infolge eines magneti- 
schen Feldes mit hoher Geschwindigkeit dreht, wird ein Model1 vorgeschlagen. Durch eine einfache 
zweidimensionale Behandlung la& sich der Verlauf der Phasengrenze zwischen dem festen und fliissigen 
Werkstoff berechnen. Die von einem Kreis abweichende Form des Schmelzbades hangt von der Grol3e des 
kleinen Parameters c ab, welcher umgekehrt proportional zur Rotationsgeschwindigkeit ist. Bedeutende 
Unterschiede ergeben sich zwischen diesem Model1 eines stark geriihrten Bades und dem Rosenthal-Model1 

fiir ein ruhendes Bad. 

TEHJIOBOH IlOTOK BO BPAIIIAIOIIIEMCII 06’bEME PACIIJIABA 

AHHoTauHn - flpennoxena Monenb Tennoaoro noToKa K T~HKOH nnacrnne, renepepyeMor0 HCTOH- 
HHKOM Tenna, MeAJIeHHO nepeMemaIonmhIcn B TOKOnpOBOAameM o6%eMe pacnnasa, KOTOpbIH apa- 
IIIaeTCIl C 6onbmoii CKOpOCTbIO nOA AetiCTBHeM npHAOXeHHOr0 MarHHTHOrO nonn. DpOCTOe HCCAeAO- 
BaHHe neybrepnot Monenn no38onxer onpenena-rb HosMymeHue ceo6onnoit rpaHHubI MexAy pac- 
IIAaBOM A OKpyXCKaloUHM TBepAbIM TCAOM. GTKAOHeHHe rpaHHubI OT @OpMbI Kpyra 3aHHCHT OT 
HenHHHHbI Manor0 napaMeTpa E, o6paTHo nponopuHoHanbHor0 CKOpOCTH epameeen. OTMeYeHbI 
CyIIIeCTBeHHbIe pa3nHHHn Mexny npeAAO,KeHHOH Monenbm HHTeHCABHO nepebremusaebforo o6beMa 

pacnnaaa n h4onenbto Po3enrann nnn nenonnrrxnoro o6aeMa XHAKOCTH. 


